

Indian Institute of Technology, New Delhi – 110016 And National Institute of Technology, Srinagar -190006

TransFed: A way to epitomize Focal Modulation using Transformer-based Federated Learning

Tajamul Ashraf¹

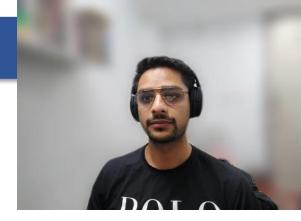
Fuzayil Bin Afzal Mir²

Iqra Altaf Gillani²

Paper ID: 479

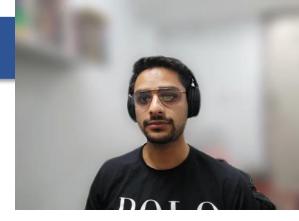
¹Indian Institute of Technology Delhi, India ²National Institute of Technology Srinagar, India

• Transformers utilize **self-attention** for global interactions, resilient to shifts.



• Transformers utilize **self-attention** for global interactions, resilient to shifts.

Transformers, with their successful self-attention mechanism, are now being applied in federated learning, combined with the Federated Averaging (FedAvg) algorithm for improved performance.



• Transformers utilize **self-attention** for global interactions, resilient to shifts.

 Transformers, with their successful self-attention mechanism, are now being applied in federated learning, combined with the Federated Averaging (FedAvg) algorithm for improved performance.

Cross-device federated learning

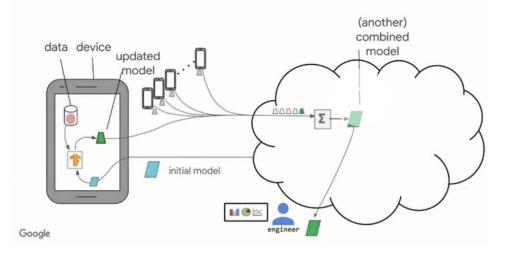


Figure 1. Illustrating Model Distribution and Combining Updates in cross-device federated learning

(Image Credits: Peter Kairouz et al.)

FocalNet Based Transformers

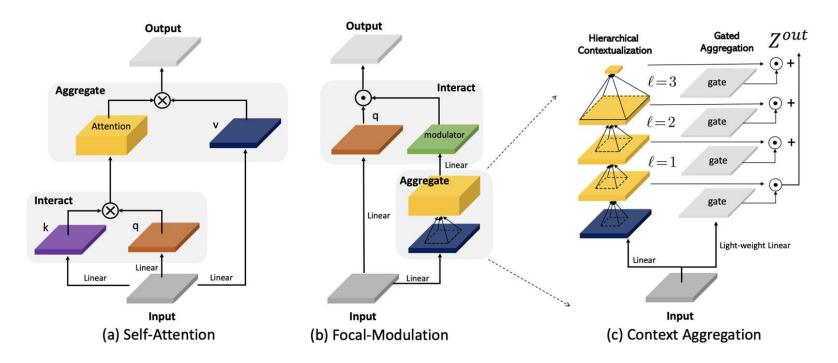


Figure 2: Left: Comparing SA (a) and Focal modulation (b) side by side. Right: Detailed illustration of context aggregation in focal modulation (c).

(Image Credits: yang et al.)

FocalNet Based Transformers

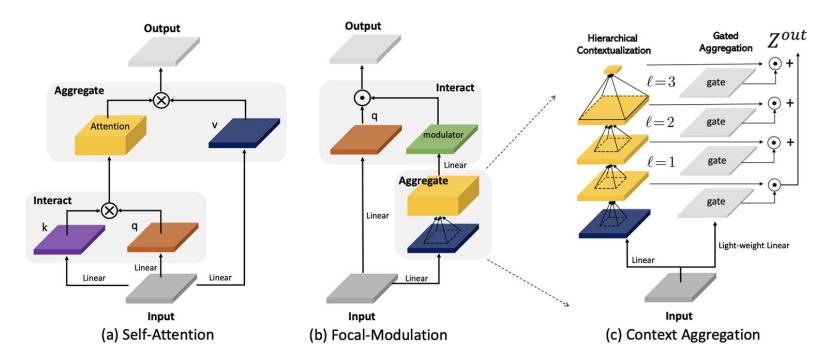


Figure 2: Left: Comparing SA (a) and focal modulation (b) side by side. Right: Detailed illustration of context aggregation in focal modulation (c).

FocalNets leverage **focal modulation** instead of self-attention, allowing for the effective modelling of interactions between tokens in visual data.

Comparing Focal Modulation Maps

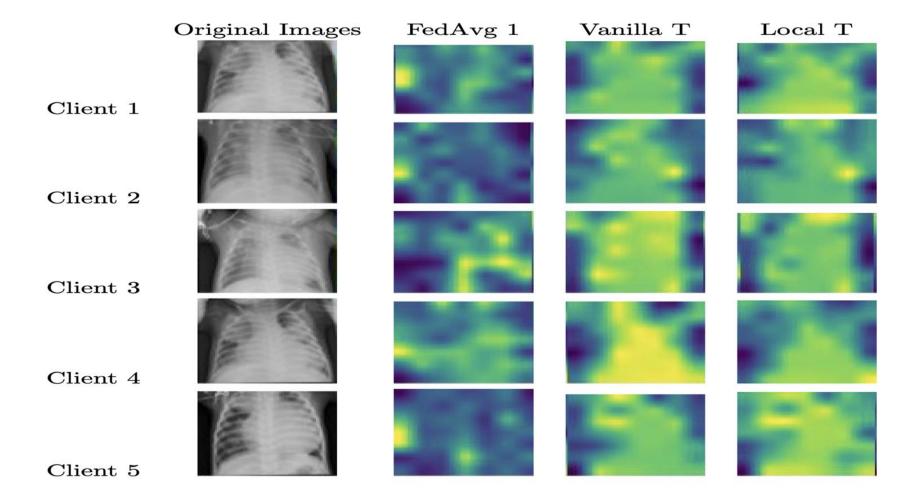
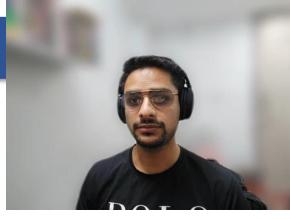


Figure 3. Comparing focal maps of Local-T, FedAvg-T, and Vanilla-T across clients, we see local training and Vanilla-T emphasize task details, while FedAvg-T disrupts such information.

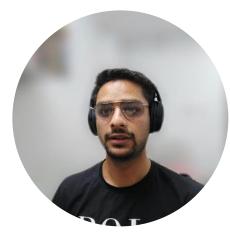


In a federated scenario, N clients with local datasets $Di = \{(x (j) l, y (j) l)\} mi$ $j=1, 1 \le l \le N$, contribute to a total dataset D of size $M = \sum_{i=q}^{N} m_i$. The model for client l is denoted as $f(\theta_l; \cdot)$ with parameters θ_l .

$$\arg\min\sum_{l=1}^{N}\left(\frac{m_{l}}{s}\right)K_{l}\theta_{l}$$

TransFED: Vanilla Tailoring of Focal Modulation

Our solution involves tailored focal modulation, **customizing local layers** while averaging others to preserve standard insights.



TransFED: Vanilla Tailoring of Focal Modulation

Our solution involves tailored focal modulation, **customizing local layers** while averaging others to preserve standard insights.

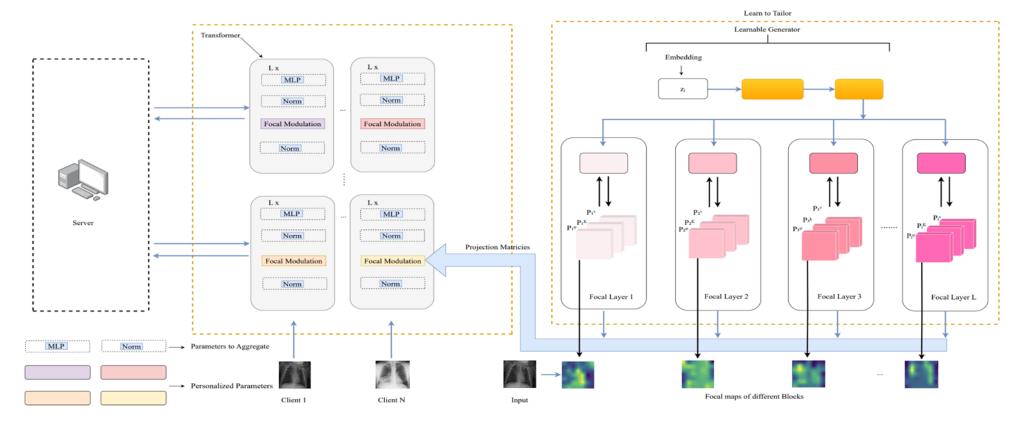
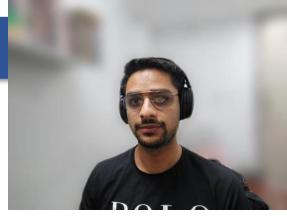


Figure 5. Comparing focal maps of Local-T, FedAvg-T, and Vanilla-T across clients, we see local training and Vanilla-T emphasize task details, while FedAvg-T disrupts such information.



Custom Learning for Focal Modulation

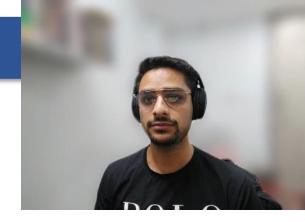
In TransFed, a Learnable generator $h\phi(zi)$ at the server, parameterized by

 φ , takes a client's embedding vector $zi \in R D$ as input.

Custom Learning for Focal Modulation

In TransFed, a Learnable generator $h\varphi(zi)$ at the server, parameterized by φ , takes a client's embedding vector $zi \in RD$ as input.

The generator produces projection parameters $Pi = h\varphi(zi)$, decomposed into query, key, and value matrices (*PQi*, *PKi*, *PV i*) for focalmodulation.

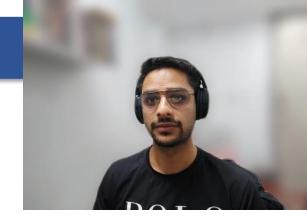


Custom Learning for Focal Modulation

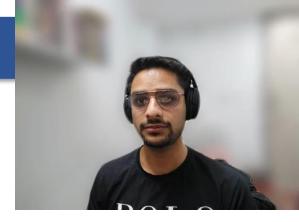
In TransFed, a Learnable generator $h\varphi(zi)$ at the server, parameterized by φ , takes a client's embedding vector $zi \in RD$ as input.

The generator produces projection parameters $Pi = h\varphi(zi)$, decomposed into query, key, and value matrices (*PQi*, *PKi*, *PV i*) for focalmodulation.

In TransFed, parameters are locally trained and aggregated on server, akin to FedAvg. The focal modulation layer, with parameters Pi, and other layers, with ξ , constitute the tailored model $\theta i = (Pi, \xi)$.

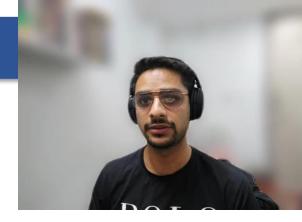


We utilized two partitioning techniques to emulate *non-IID* (*non-identically distributed*) scenarios in our experiments.



We utilized two partitioning techniques to emulate *non-IID* (*non-identically distributed*) scenarios in our experiments.

- Pathological setting
- Symmetric Beta distribution

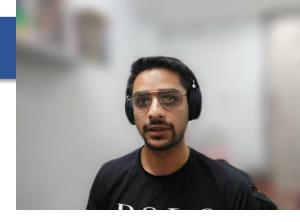


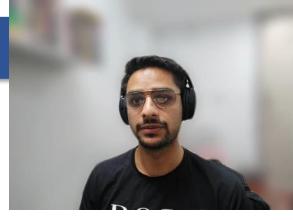
We utilized two partitioning techniques to emulate *non-IID* (*non-identically distributed*) scenarios in our experiments.

- Pathological setting
- Symmetric Beta distribution

Dataset	Task	Clients	Total Samples	Model
RSNA [31]	Image Classification	100/200	30227	FocalNet
Kermany [11]	Image Classification	100/200	5,232	FocalNet

Table 1. Datasets and Models.

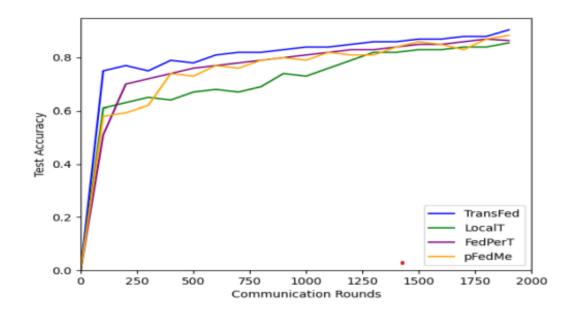


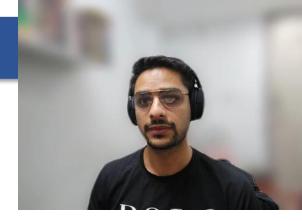


• Fundamental federated algorithms: *FedAvg* and *FedProx*.

- Fundamental federated algorithms: *FedAvg* and *FedProx*.
- State-of-the-art customization algorithms: *FedPer, pFedMe, and FedTP*, as well as Vanilla-based models.

- Fundamental federated algorithms: *FedAvg* and *FedProx*.
- State-of-the-art customization algorithms: *FedPer, pFedMe, and FedTP,* as well as Vanilla-based models.





Performance Analysis

We conducted a comprehensive performance comparison between TransFed and several well-known federated learning methods, designed initially based on CNN backbones.

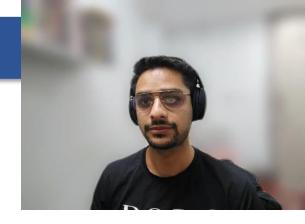
Performance Analysis

We conducted a comprehensive performance comparison between TransFed and several well-known federated learning methods, designed initially based on CNN backbones.

	RSNA dataset				Kermany dataset			
<pre># distribution # no. of clients</pre>	Pathological 100	Pathological 200	Beta 100	Beta 200	Pathological 100	Pathological 200	Beta 100	Beta 200
Local-T	$84.55 {\pm} 0.15$	$82.21 {\pm} 0.08$	$69.94 {\pm} 0.13$	$66.68 {\pm} 0.13$	$55.91 {\pm} 0.17$	$49.25 {\pm} 0.11$	$27.87 {\pm} 0.12$	$23.34{\pm}0.10$
FedAvg-T	$50.42 {\pm} 4.22$	$46.28 {\pm} 4.23$	$61.85 {\pm} 1.5$	$59.23 {\pm} 1.93$	$34.02 {\pm} 0.88$	$30.20 {\pm} 0.95$	$38.64 {\pm} 0.22$	$34.89 {\pm} 0.45$
FedPer-T	$89.86 {\pm} 0.89$	$89.01 {\pm} 0.12$	$79.41 {\pm} 0.16$	$77.70 {\pm} 0.14$	$67.23 {\pm} 0.32$	$61.72 {\pm} 0.16$	$37.19 {\pm} 0.18$	$29.58 {\pm} 0.14$
pFedHN-T	$82.26 {\pm} 0.61$	$77.57 {\pm} 0.52$	$71.45 {\pm} 0.87$	$68.13 {\pm} 0.67$	$53.08 {\pm} 0.72$	$39.94 {\pm} 0.91$	$33.25 {\pm} 0.77$	$29.14 {\pm} 0.98$
Fed TP	$79.75 {\pm} 0.22$	$75.46 {\pm} 0.11$	$77.25 {\pm} 0.69$	$71.13 {\pm} 0.84$	$48.61 {\pm} 0.45$	$46.05 {\pm} 0.47$	$36.63 {\pm} 0.98$	$25.13 {\pm} 0.35$
Vanilla -T TransFed	91.83±0.27 92.67±0.74	91.28±0.12 91.34±0.86	89.23±0.78 88.49±0.38	87.77±0.37 88.16±0.33	88.67±0.54 89.80±0.23	88.23±0.11 87.73±0.74	87.74±0.12 87.34±0.92	87.26±0.85 86.98±0.64

Table 2. The TransFed method average test accuracy is computed alongside that of multiple transformer-based approaches, encompassing different non-IID scenarios.

This study examined the effects of personalizing various components of the transformer model.



This study examined the effects of personalizing various components of the transformer model.

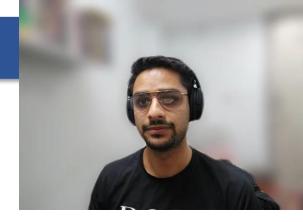
We used the same Learnable generator for all components and kept the focalnet structures consistent.

This study examined the effects of personalizing various components of the transformer model.

We used the same Learnable generator for all components and kept the focalnet structures consistent.

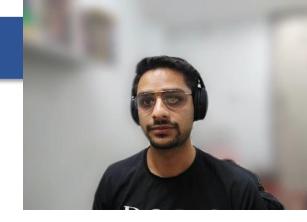
Customized Part	RSNA		Kerma	ny	
	Pathological	Beta	Pathological	Beta	
Focal Modulation	$92.67 {\pm} 0.74$	$88.49 {\pm} 0.38$	$89.80 {\pm} 0.23$	$87.344 {\pm} 0.92$	
MLP Layers	$88.45 {\pm} 0.14$	$86.36 {\pm} 0.17$	$87.76 {\pm} 0.14$	$85.97 {\pm} 0.16$	
Normalization Layers	$89.56 {\pm} 0.45$	$86.55 {\pm} 0.27$	$86.23 {\pm} 0.37$	$87.22 {\pm} 0.39$	
Encoder	$82.34 {\pm} 0.43$	$83.65 {\pm} 0.52$	$83.79 {\pm} 0.24$	$83.95 {\pm} 0.37$	

Table 3. Average test accuracy of focal models with varying customized components.



We thoroughly assessed our method's capacity for generalization, comparing it with *pFedMe*, *pFedHN*, *FedRod*, and a customized-T Vanilla approach on the Kermany and RSNA datasets under the Beta configuration.

We thoroughly assessed our method's capacity for generalization, comparing it with *pFedMe*, *pFedHN*, *FedRod*, and a customized-T Vanilla approach on the Kermany and RSNA datasets under the Beta configuration.



-	Method	Personalization	Client Accuracy (%)	Convergence Time (epochs)	
	pFedMe	All Parameters	78.3	8	
	pFedHN (Embedding)	Clientwise Embedding	79.5	6	
	pFedHN (Hypernetwork)	Whole Hypernetwork	80.2	5	
	FedRod	Last Classification Layer	77.8	10	
	Vanilla Personalized-T	Self-Attention Projection Matrices	76.7	12	
	FedTP	Self Attention Layers	81.2	4	
-	TransFed (Learnable Generator)	Focal Modulation Layers	82.6	3	

Table 4. Generalization Performance Comparison on RSNA dataset.

We examined the impact of the number of participating clients on model performance by varying the sample rate.

We examined the impact of the number of participating clients on model performance by varying the sample rate.

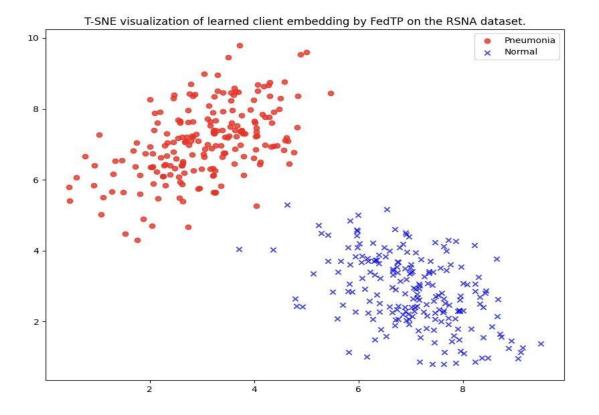
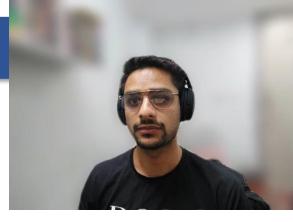
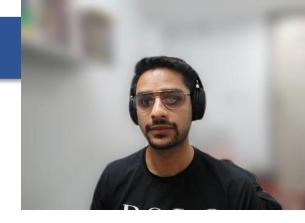


Figure 6. Visualization of Client Embeddings Learned by TransFed using **t-SNE** on the RSNA Dataset.



In our comprehensive comparative analysis of the experimental outcomes, our novel TransFed model emerges as a standout performer in direct contrast to the state-of-the-art benchmark methods



In our comprehensive comparative analysis of the experimental outcomes, our novel TransFed model emerges as a standout performer in direct contrast to the state-of-the-art benchmark methods

	Cifar 10				Cifar 100			
settings	ings Pathological		Dirichlet		Pathological		Dirichlet	
Client	50	100	50	100	50	100	50	100
FedAvg [8]	$47.79 {\pm} 4.48$	44.12 ± 3.10	$56.59 {\pm} 0.91$	$57.52{\pm}1.01$	$15.71 {\pm} 0.35$	$14.59 {\pm} 0.40$	$18.16 {\pm} 0.58$	$20.34{\pm}1.34$
FedProx [6]*	$50.81 {\pm} 2.94$	$57.38 {\pm} 1.08$	$58.51 {\pm} 0.65$	$56.46 {\pm} 0.66$	$19.39{\pm}0.63$	$21.32 {\pm} 0.71$	$19.18 {\pm} 0.30$	19.40 ± 1.76
FedPer [2]*	$83.39 {\pm} 0.47$	$80.99 {\pm} 0.71$	$77.99 {\pm} 0.02$	$74.21 {\pm} 0.07$	$48.32{\pm}1.46$	$42.08 {\pm} 0.18$	$22.60 {\pm} 0.59$	$20.06 {\pm} 0.26$
pFedMe [9] *	$86.09 {\pm} 0.32$	$85.23 {\pm} 0.58$	$76.29 {\pm} 0.44$	$74.83 {\pm} 0.28$	$49.09 {\pm} 1.10$	$45.57 {\pm} 1.02$	$31.60 {\pm} 0.46$	$25.43 {\pm} 0.52$
FedBN [7]*	$87.45 {\pm} 0.95$	$86.71 {\pm} 0.56$	$74.63 {\pm} 0.60$	$75.41 {\pm} 0.37$	$50.01 {\pm} 0.59$	$48.37 {\pm} 0.56$	$28.81 {\pm} 0.50$	$28.70 {\pm} 0.46$
pFedHN [4]*	$88.38{\pm}0.29$	$87.97 {\pm} 0.70$	$71.79 {\pm} 0.57$	$68.36 {\pm} 0.86$	$59.48 {\pm} 0.67$	$53.24 {\pm} 0.31$	$34.05 {\pm} 0.41$	$29.87{\pm}0.69$
pFedGP [1]*	$89.20 {\pm} 0.30$	$88.80 {\pm} 0.20$			$63.30 {\pm} 0.10$	$61.30 {\pm} 0.20$		
FedRoD [3]*	$89.87 {\pm} 0.03$	$89.05 {\pm} 0.04$	$75.01{\pm}0.09$	$73.99 {\pm} 0.09$	$63.30{\pm}0.10$	$61.30 {\pm} 0.20$		
FedTP [5]	$90.31{\pm}0.26$	$88.39 {\pm} 0.14$	$81.24 {\pm} 2.17$	$80.27{\pm}0.28$	$68.05{\pm}0.24$	$63.76{\pm}0.39$	$46.35{\pm}0.29$	$43.74 {\pm} 0.39$
TransFed (Ours)	93.47±0.75	91.85±0.39	82.89±0.75	79.75±0.15	71.96±0.54	68.11±0.39	51.75±0.12	44.33±0.74

Table 5. Results OF FedTP and other Benchmark methods on Image datasets with different Non-IID settings.

• We introduced **TransFed**, a transformer-based federated learning framework that addresses the limitations of Focal Modulation in non-IID scenarios.

- We introduced TransFed, a transformer-based federated learning framework that addresses the limitations of Focal Modulation in non-IID scenarios.
- TransFed enhances the performance of Focal Modulation by tailoring it to each client through the use of a **central Learnable generator**.

- We introduced TransFed, a transformer-based federated learning framework that addresses the limitations of Focal Modulation in non-IID scenarios.
- TransFed enhances the performance of Focal Modulation by tailoring it to each client through the use of a central Learnable generator.
- Experimental results demonstrate TransFed's superiority in non-IID contexts, with an increase in 8% and 12% on RSNA and Kermany respectively.

- Jianwei Yang, Chunyuan Li, Xiyang Dai, and Jianfeng Gao. Focal modulation networks. Advances in Neural Information Processing Systems, 35:4203–4217, 2022.
- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera Y Arcas. Communication efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR, 2017. 1, 6
- Hongxia Li, Zhongyi Cai, Jingya Wang, Jiangnan Tang, Weiping Ding, Chin-Teng Lin, and Ye Shi. FedTP: Federated learning by transformer personalization. IEEE Transactions on Neural Networks and Learning Systems, 2023.
- 1. Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.
- 1. David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Indian Institute of Technology, New Delhi – 110016 And National Institute of Technology Srinagar

Thank You

tajamul@sit.iitd.ac.in mfuzayil@gmail.com iqraaltaf@nitsri.ac.in